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Abstract--Exact solutions in closed form have been found using the eigenfunction-expansion method 
for various linear and quadratic flows of an unbounded incompressible viscous fluid at low Reynolds number 
past a porous sphere with a uniform permeability distribulion. The linear flows considered here are a simple 
shear and an axisymmetric uniaxial straining flows and the quadratic flows include a unidirectional parabol- 
oidal and a stagnation-like flows as typical representations. The theoretical analysis determines a general mo- 
tion of a freely suspended particle in the prescribed mean flow at infinity. Then the solutions are expressed in 
terms of fundamental singularity solutions for Stokes flow which will be applied to examine the motion of a 
porous sphere in the presence of a plane fluid-fluid interface in the forthcoming part of the present paper. 

INTRODUCTION 

This paper examines a problem in which a porous 
particle is immersed in either a linear or quadratic 
mean flow at infinity in an unbounded single-fluid do- 
main. The flow of viscous fluid past a tx>rous particle 
has been a problem of long-standing interest, corres- 
ponding to various types of app]ication. For example, 
an arbitrary motion of a porous particle through a fluid 
at rest at infinity is relevant to sedimentation pheno- 
mena of flocs and particle clouds [cf. Ooms et al.[1]; 
Felderhof and Deutch [2]; Felderhof [3]; Matsumoto 
and Suganuma [4]; among others]. Particle motion in 
more general flow fields such as pure straining flow is 
relevant in suspension mechanics, and to some as- 
pects of the modeling of polymer molecules to account 
for the hydrodynamic interaction between polymer 
segments [cf. Felderhof [5]; Deutch and Felderhof 
[61]. 

The study of the porous media problem begins 
with Darcy's law, according to which the average fluid 
velocity is proportional to the average pressure gra- 
dient. Darcy's law has been applied to various pro- 
blems involving flow through porous media and has 
proved to be reliable model for creeping flow in the 
interior of statistically homogeneous isotropic mate- 
rials. Despite of its success for interior flow, Darcy's law 
is not a complete model for a porous medium of finite 
size bordered by regions of pure fluid. Under normal 
circumstances, we require continuity of velocity and 
surface stress across the boundary; however, this is 
not possible due to the reduced order of I-)arcy's law as 

compared with the Stokes equation. To circumvent the 
singular behavior of Darcy's law at the boundary, Bea- 
vers and Joseph [7] proposed, on heuristic grounds, a 
slip boundary condition which allows discontinuity in 
the fluid velocity across the particle surface. Saffman 
[8] and others have offered theoretical justification on 
the slip condition of Beavers and Joseph. A second ap- 
proach to the problem of matching the interior and ex- 
terior flows is to replace Darcy's law with Brinkman 
equation of the same order as the Stokes equation. 

Brinkman equation is based on a prima facie as- 
sumption that the resistance due to the solid inclusions 
is proportional to the local relative velocity of the fluid 
and solid phases [cf. Brinkman [9] ; Debye and Bueche 
[10]]. It is however made with reliance on physical 
intuition and the a posteriori justification by the success 
of the hypothesis [cf. Larson and Higdon [11] and re- 
ferences therein]. Howells[12] determined the 
Green's function (i.e., the fundamental solution for a 
point force) of Brinkman equation to calculate the drag 
on an impermeable particle immersed in an isotropic 
porous medium comprised of a random array of parti- 
cles, and gave justification of Brinkman's model as 
providing a first approximation for the mean flow past 
a sDhere in the case of sparse distribution. Kojima [13] 
employed the Grepn's functions for Stokes equation 
and for Brinkman equation as found by Howells to 
construct integral solutions valid in their respective do- 
mains,,and outlined the method for calculating the 
translational friction and the intrinsic viscosity for di- 
lute suspensions of porous spheres by considering 
asymptotic forms of the integral equations for large or 
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small permeability limit. In another study, Matsumoto 
and Suganuma [4] measured the settling velocity of 
model flocs of steel wool and found good agreement 
with the velocity predicted by Brinkman equation. In 
practice, Brinkman equation appears more useful, be- 
cause it incorporates a more fundamental analysis and 
embodies a well-defined stress tensor�9 

In the present effort we examine the case of a po- 
rous sphere immersed in a Newtonian fluid in an un- 
bounded domain which is undergoing a linear or a 
quadratic mean flow at infinity. The method of solu- 
tion employed here is the eigenfunction-expansion for 
both Stokes and Brinkman equations in spherical co- 
ordinate system�9 The linear flows considered here are 
a simple shear and an axisymmetric straining flows 
and the quadratic flows include a unidirectional para- 
boloidal and a stagnation-like flows�9 The theoretical 
analysis determines a general motion of a f~eely sus- 
pended particle in the prescribed mean flow. Then the 
solutions are expressed in terms of fundamental sin- 
gularil:y solutions for Stokes flow to investigate the mo- 
tion o+f porous particles in the presence of a plane fluid- 
fluid interface in the forthcoming part of t~is work. 
The solution scheme for the latter problem is the re- 
flections-method in conjunction with the correspon- 
ding solutions for an unbounded single-fluid domain 
{cf. Lee et al. [14]; Yang and Leal [15]]�9 

BASIC E Q U A T I O N S  

We begin by considering the governing equations 
and boundary conditions for the flow fields both inte- 
rior and exterior to a porous sphere immersed in an in- 
compressible Newtonian fluid which, at large distance 
from the particle, is undergoing an undisturbed flow 
defined by a velocity U~(x) and pressure P~x). The 
variables in this analysis may be considered :o be non- 
dimensionalized with respect to the characteristic vari- 
ables: ur (velocity), 1r a(length, i.e., sphere radius a) 

, U L I c  , . , 

and p~ =-.--~-tstress). We take a coordinate system in 

which the particle is placed at origin, x = (x, y, z) being 
the position vector, and e:,, ey and ez the base vectors 
in the x, y, z directions, respectively. It is assumed that 
the Reynolds number for the motion is sufficiently 
small that the quasi-steady approximation is appli- 
cable. The equations of motion therefore reduce to ste- 
ady Stokes equation plus continuity equation for the 
flow outside the particle, i.e., 

~' �9 r ~ = - V p  ~ + v Z u ~  O (la)  

'~  �9 u ~ = 0 (lb) 

where the superscript "o" denotes the ftow field exte- 
rior to the porous sphere. 

The flow of a viscous fluid through an isotropic po- 

rous medium can be analyzed by studying a simple 
continuum model, consisting of a random array of so- 
lid objects which is permeable to the flow and exerts a 
friction proportional to the local relative velocity of the 
fluid and the solid phases: 

1 2 2  

~ ' '  r ~ = - V P  ~ + ~2u~ = - - u  + (2a) 
k 

v �9 u + = 0 (2b) 

in which the superscript 'T '  represents the flow field 
interior to the sphere. The Brinkman equation, (2a), 
proposed independently by Brinkman [9] and Debye 
and Bueche [10], is based on the creeping motion 
equations for low Reynolds number flow with an addi- 

9 

tional friction a ' t t '  to account for the local resistance 
x 

arising from the discontinuities in shear stress and 
2 

�9 �9 a i pressure across the solid phases. We can identify)?-- u 

as the force per unit volume that the fluid exerts upon 
{he solid surface beyond the hydrostatic force and be- 
yond any force attributable to the ambient pressure. 
When the viscous term is omitted in (2a), the Brink- 
man equation reduces to the Darcy's law for a porous 
medium with the permeability z. Although (2a) was 
originally derived from heuristic arguments, it has 
since received theoretical and experimental justifica- 
tion from numerous authors [e.g., Howells [12]; Fel- 
derhof and Deutch [3] ; Matsumoto and Suganuma [4] ; 
Larson and Higdon [11] and others]. 

The boundary conditions for the equations, (1) and 
(2), are 

u ~  p ~  as r ~ j x ] - - + o o  (3a) 

plus the continuity of velocity and of the stress force 
across the sphere surface, i.e., 

u ~  l, n - r ~  ~ a t  r =  1 (3b) 

where n is the unit normal to the sphere surface. 
We now derive a general solution of the Stokes 

equation (la) and Brinkman equation (2a) plu,; the 
continuity equations (lb) and (2b) in terms of the fun- 
damental eigenfunctions for a spherical coordinate 
system(r, 4,, 0). According to (1) and (2) the pressure 
fields, p~ and P'iX) are harmonic functions, i.e., 

V2pO = W2pi = 0 (4) 

and can therefore be expressed in terms of solid sphe- 
rical harmonics. We shall now specialize the general 
solution to separate domains involving the regions 
interior and exterior to the porous sphere. 
G e n e r a l  s o l u t i o n  e x t e r i o r  to  t h e  s p h e r e  

For the situation in which the disturbance flow due 
to the presence of the particle is required to vaniLsh at 
infinity [i.e., boundary condition (3b)], Lamb [16] outli- 
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nes a general solution of the creeping motion equa.- 
tions in a series of solid spherical harmonics: 

pO (Sa) 
p~ = P~(x) + Z" r '  . . . .  

and 

n - 2  r ' V  p~ n + : l _ - x  po .1 
2n (2n -1 )  r 2~7~+~ n(2n--1) r . . . . .  ) 

~5b) 

where p,? Z ~ and r are solid spherical harmonics of 
positive order n. 

We now evaluate the stress vector (i.e., surface for- 
ce, n-r)  acting on the surface of a sphere in order to 
determine the flow fields from satisfying the boundary 
condition (3b). The stress vector n. r on the sphere, in 
general, can be expressed as 

x (Ou u ) + + v ( x . u  ) n -r  = - - - p +  - (6) 
f ~ T  r 

for an incompressible Newtonian fluid [cf. Happel and 
Brenner [17]]. By means of the general solution (5), 
Equation (6) can ultimately be expressed in the form'. 

~ /  ~7 Jr~ • x 
n ' r ~  r ~ - (n+2) r~.+ ~ -  

r 2n'  + 1 p ~ 
- 2  ( n + 2 ) V  r . . . .  n(2n_t)Xr . . . .  

n ~ _ l  2V pO ) 
-t n(2n--1) r ~ (7) 

where r ~ (x) is the stress field generated by U~(x) and 
P = (x). 
G e n e r a l  s o l u t i o n  i n t e r i o r  to  t h e  s p h e r e  

A general sulution of the Brinkman equation plus 
the continuity equation can be also derived, in terms of 
solid spherical harmonics p~,, I',, and r of positive 
order n and the modified spherical Bessel function 

~--I I ~2~rr '~+ }(at) of order n + ~- (the condition of boun- 

dedness of the velocity at origin limits u,; to positive 
harmonics): 

v' (x)~ f p~ (8a) 
n = l  

and 

n = l  k. O "  

4-{ (n+ l )  ~',,_~ (ar)§ (ar)a~r~[ 
~ r  - n ( 2 n +  1) ~,~+, (ar) a ' x  r / 

(8b) 
1 in which o- is defined by -~  = ~ ,  the dimensionless 

permeability. Here, 

~"~ (ar) = / 2  (ar) -~"+~ In§ ~ (ar) (9a) 

has the special properties: 

90 (~')= sinh ~ 1 , 

The stress vector n . r '  interior to the sphere can also 
be expressed by utilizing the general solution (8) in 
combination with (6): 

n ' r '  ( x ) = ~ l  ~ r n = , / - Q n ( a r ) V x ~ •  

2 
, (n-  1 ) v p ' -  p~. x + R .  (at) r e "  

d7 

2 n + l  x} (10a) s .  (o,-) r 

where 

Q,, (~.) = ~.2 ~,~+, (~.) + ( n -  1) ~',, (~') (10b) 

Rn (~') = ( n + l )  { ~" ~',~ (~') +2  (n -  1) ~,'n-, (~)~ 

+ n ~ "  I~ "2 ~.+~ (~ ' ) -  ~.+~ (~')1 (10c) 

and 

s,,  (~-)=nCI ~" ,k.+, (~') - ,k,,+, (~)1. (10d) 
It should be noted that the general solutions defin- 

ed by (5) and (8) automatically satisfy the governing 
differential equations, as well as the condition (3a) of 
vanishing disturbances in the far field. All that re- 
mains is to satisfy the boundary condition (3b) at the 
sphere surface, according to which the fluid velocity 
and surface force must be continuous across the sur- 
face. 

This complet~ our derivation of the general solu- 
tion forms for the flow fields both exterior and interior 
to the porous sphere. We shall turn shortly to the ap- 
plication of these solutions for the problem in which a 
porous sphere is immersed in a viscous fluid that is un- 
dergoing a mean flow at infinity. It is worthwhile stu- 
dying the motion of porous particles in a mean flow, 
not only because it is interesting in its own right but 
also because the solution leads to a resolution of the 
general suspension theology of entangled polymer 
molecules or fiocs. The problem is also relevant to the 
resolution of the boundary effects on the particle mo- 
tion via a normal reflections-type calculation proce- 
dure. When a particle moves in the vicinity of a fluid 
interface, the presence of the interface will induce a 
'reflected' velocity field. The leading terms of the inter- 
face reflections include uniform streaming flows, lin- 
ear shear and uniaxial straining flows, and quadratic 
paraboloidal [i.e., U~(x) = K (~y2 + z2)e.~] and stag- 
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Fig. I. Schematic diagrams for (a) a linear shear flow 
U~{x) --F.x, {b) a un|axial extensional flow U ~ 
(x)=E.x, (c) a quadratic paraboloidal flow U ~ 
(x) = K(~y 2 + z2)ex and {d) a quadratic stagna.. 
tion-ltke flow U| +~'2ex-~xyey 
-xygez] 

i 9 
nation-like [i.e., U ~ (x)= K {~-(1 +~)x~e~-~xye:,  

-xze~}] flows [15]. Thus, in order to analyze the too- 
lion of particles near a plane interface using the refiec- 
lions-method in conjunction with the fundamental sin- 
gularity solutions for Stokes flow, we must determine 
the spatial distribution of fundamental singularities 
(e.g., Stokeslets, rotlets, stresslets and higher order sin- 
gularities) that generates the same disturba,qce motion 
as the presence of the particle in an unbounded fluid 
domain [14, 151. In the following, we shall examine 
the case of porous sphere which moves either in a lin- 
ear flow or in a quadratic flow as depicted in Figure 1. 
The solution will then be expressed in lerms of the 
fundamental singularity solutions of creeping motion 
equation, which will be used in the forthcoming part 2 
of the present paper to study particle motions in the 
presence of a flat fluid interface. First, however, in 
view of the ]inearity of the problem it is necessary to 
determine the general motion, of a porous particle in a 
quiescent fluid in order to an.alyze an arbitrary motion 
in a mean flow at infinity. 

TRANSLATION AND ROTATION IN A 
QUIESCENT FLUID 

[,el us now consider the specific problem of a po- 
rous sphere which is translating or rotatirg in a qui- 

escent fluid. We choose, for convenience, a moving co- 
ordinate system in which the particle is at rest with 
center of mass at origin. In it, a uniform streaming 
flow, U ~(x)--e,~ or a rotational flow, U~(x) - -e.~ x 
x, around a stationary particle is precisely equivalent 
to translation (U : e v} or rotation (g  = e,) with respect 
to the fixed frame of reference in a quiescent fluid. It 
should be noted that the undisturbed flow velocity U ~ 
(x) is normalized by the translational or angular.velo- 
city, U o r Q ,  of the particle in the fluid al resl at infi- 
nity. Owing to the linearity of the problem, fisrt, we 
can analyze the streaming flow past a porous sphere, 
separately from the rotational flow, by utilizing the 
general solution forms (5), (7), (8) and (I0). The most 
convenient method for doing this is to make the foll- 
owing substitutions into the genera] solution forms: 

lv,~, r -S IA ,~ , , , ,B  . . . .  C,,.,,,IY . . . .  (8,r 
m = - r l  

( n )  

where Y,,.m(&r is the normalized surface spherical 
harmonic of order n and rank m. All that is required 
is a specification of the undisturbed velocity U (x) and 
pressure P~(x) in terms of spherical harmonics; name- 
ly, the coefficients A ...... B,,,., and Cn,., in (11), and solu- 
tion of the resulting algebraic relationships from the 
boundary condition (3b) at the particle surface. The 
nonzero spherical harmonics, determined from the 
boundary condition (3b), are 

Jr g~0(O;r (12a) p { !  , �9 

r B{,,, ,',a) ' 

where 

A1~ = A,,o(a) 

B{~,o (a) = 

3, , '  ,/-, (o)  
2 g,o(a) +2` , ' r  + 3  r 

(12c, d) 

a '12  ~, (`,) - ,/-, (`,)1 
2 {2 g,.0 (`,) + 2 a '  !/', (a) +3  g.', (o-)1 

(12e) 

and 

B{,o (~ = 1 (12f) 
2 f0 (a) +2` , '  f ,  (`,) + 3  !/', (`,). 

The solution, (12a, b), specifies completely the ve- 
locity and pressure fields exterior and interior I:o the 
porous particle. In particular, the velocity field exterior 
to the sphere is thus given by 

1 A % ( a ) ( ? §  u ~  = U ~ ( x )  + 2 -  r'  
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Bo (%_ 3xx~ 
--~ l,O (0") ( 1 3 )  

T 3 ,i . 5  ~ . 

It can be easily seen that the disturbance velocity due 
to the presence of the particle in (13) is precisely the 

1 o same as that induced by the Stokes]et ,~ = ~- Ai,0(o)ex 

and the potential dipole ,8=-B~ located at the 
sphere center. As o-+oo, Equation (13) reduces to the 
velocity field for the case of a rigid impermeable sp- 
here, and is identical with the flow generated by the 

3 1 singularities, a = ~- ex and ,8 = - ~- ex at origin [cf. 

Chwang and Wu [18] ]. 
As there is no contribution to the drag force from 

polential doublet, the drag on the sphere is simply 
given as: 

F = - 4 rrAl~ (a)e~ (14) 

(The dimensional drag force is F multipl ed by/*Ua). 
When either z----0 or a-,.c.o,i.e., in the limit of large or 
small permeability, the leading terms in (14) can be 
determined from the asymptotic properties of modified 
spherical Bessel functions: 

F = - - ~ - z r a ' l l -  a ' + O ( a ' ) l e ,  as a- - 'O 

(15) 

and 

F = - 6 n I 1 -  1--+O(a-2) tex  as a ~ o o  (1.6) 
(7 

which are identical with the asymptotic solutions of Ko- 
jima [13]. In Figure 2, the drag of (14) is plotted as a 
function of the dimensionless permeability. The drag 
asymptotically calculated by Kojima is also shown in 
the figure. It can be seen that the approximation so[u- 
tion shows reasonably good agreement with the exact 

1.0 

0.8 

~ 0.6 
::k 

0.4 

0.2 >%.._ 
0.0 , , t 

10 -3 10 -2 10 -I '.i .0 10 
"~ / a2 F 

Fig. 2. Dimenslonle.~ drag force, 6z-zpi'~aa' as a fun. 
X. 

c t i o n  of  t h e  d i m e n s i o n l e s s  p e r m e a b i l i t y  a2,--" 

- - ,  for  t h e  e x a c t  s o l u t i o n  of  (14);  . . . .  , for  t h e  
a s y m p t o t i c  s o l u t i o n s  o f  (15 ,16) .  

solution over the entire range of permeability. 
We now turn to the case of a stationary sphere im- 

mersed in the rotating fluid with a constant angular ve- 
locity ~'= -ex (i.e., U~(x) = -ex • x). As in the prece- 
ding example, the solution that satisfies the boundary 
condition at the sphere surface can be simply repre- 
sented by spherical harmonics 

C o , 1 ,0  ~ o ' )  / 
/ r  Y, o(0. r (17a) 

x{  / ,,o (o )  J ' 

where 
2 

CO (,7) = ,7 '/'2 (~) 
r (o) 

and C' (a) = 1,o 
~0(a)  

(17b, c) 

All other spherical harmonics in the general solution 
forms, (5), (7), (8) and (10), are zero. The velocity field 
exterior to the sphere, given by the spherical harmo- 
nics Z~,is 

[ C~ (a)  [ (18) u ~  / 1  / 
in which the disturbance velocity can be also genera- 
ted by a rotlet 7 = C~~ at the sphere center. It 
should be noted that ,when a-,,~, the solution (18) re- 
duces to the case of a rigid impermeable sphere (i.e., 
C~'o (a)~l) .  

The torque exerted on the sphere by the rotational 
flow can be easily calculated from the strength of the 
rotlet: 

T -- - 8 zC~ (a)ex (19) 

The dimensional torque is given by T multiplie:i by the 
factor ,u~aa 3. In the limit of small permeability (i.e., 
a co) one obtains for the asmptotic behavior 

T = - 8 ~ l l - ~ + O ( a - ' )  } e~ a s a  ~ - . o o  

(20a', 

and for large permeabilities, a--0,  one has 

T =  15 Jr~ 1 -  a ~ i O[a"t e~ as a - * O .  

(20b) 

The present solution (19) agrees with that in Felderhof 
and Deutch [21 based on an ad hoc ansatz involving 
separation of variables in axisymmetric spherical co- 

O ordinate system ( i . e . , ~ =  0). In Figure 3, the hydrody- 

namic torque, (119), is plotted as a function of the di- 
mensionless permeability. Also shown for comparison 
is the corresponding approximation solution ot (20a,b). 
There is very good agreement between the two solu- 
tions in the limit of large of small permeability. 
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lO-I 10 -2 1.0 10 
~r / a 2 

T Fig. 3. D imens ion le s s  hydrodynamic  torque - -  8n,u~a s 
as a function of the d i m e n s i o n l e s s  permeabi-  

3g 
lit), ~ ;  , for the exact  solut ion of 09} ;  . . . .  , 

for the asymptot ic  so lut ions  of {20a,b). 

LINEAR F L O W  

A x i s y m m e t r i c  s t r a i n i n g  f l o w  
We consider the simplest case of an extensional 

flow (also called 'hyperbolic flow') past the present po- 
rous sphere with an axisymmetric free stream 

U ~(x) = L . x  

where the strain rate tensor L = {L,j} is defined by L 0- = 
38a6"/~-#,/ and nondimensionalized with respect to 
the slrain rate L (i.e., u~ = La). In this case, expanding 
U~(x) and P~(x) in terms of spherical harmonics, it 
can be easily shown that all terms in the germral solu- 
tions, (5), (7), (8) and (10), vanish except for n = 2, 
m = 0 and X2 = 0. The coefficients A2.0, B2. 0 can be cal- 
culated from satisfying the boundary condition at the 
sphere surface: 

{ G' 

p~ 

r 

where 

}={A~ '~  }r2 Y2,o(0,r (21a) 
A~,0 (~) 

} {B~'~ }r'  Y , , o l O , r  (21b) 
B' (G) 2,0 

( a ) -  ~ = -  -A2.0 (a) 
10o "2 g*2 (a) 

g*o (a) +10 g*2 (a) 

1 B o ,.o (G) = - - .  3 

and 

(21c, d) 

2 ,/,0 (,,) -30 ,/,=/o) - 5 s  , ,  (o) 
I/*o (~) 4-10 ~ (a) 

(21e) 

B ~ , o '  ~ } 
g'o[a + 1 0 ~ 2 ( a )  . 

(21f) 

The fundamental singularities required in construc- 
ting the present exact solution for the velocity field 
exterior to the porous sphere, 

~ A  o u ~  2 2,o a ) r  ~Y2o(8 , r  

-~B~ (a) ~ I  r -~ Y2,o 18, r (22) 

are easily seen to be a stresslet and potential quadru- 
pole of the form: 

1AO Stresslet  " ~- 2,0 (c~) uss(x ; ex, ey) 

1 
Potential Quadrupole ; ~ B ~ , o  ueQ(x ; e . . e y ) .  

[cf. Chwang and Wu [18] for the fundamental sohJtion 
forms of Uss and u~] .  It should be noted that, when 
0--.0% the present solution for the veloqity field exterior 
to the sphere reduces to 

u O ( x ) = U ~ ( x )  5 - ~ -  u**(x ; ex, %) 

1 
2 upQ(x ; ex, ex) (23) 

which is identical with Chwang and Wu's [18] result 
for the case of a rigid impermeable sphere. 

All of the preceding examples are concerned with a 
porous sphere immersed in an axisymmetric undistur- 
bed flow, and thus the rank m of the spherical harmo- 
nics is consequently zero. We now proceed to consider 
non-axisymmetric undisturbed flows (e.g., simple 
shear flow) with nontrivial azimuthal dependence (i.e., 
0 

L i n e r  S h e a r  f l o w  
An incompressible Newtonian fluid is in steady 

shear flow past a neutrally buoyant porous sphere 
which is freely suspended in the fluid. The fluid veloci- 
ty at infinity, nondimensionalzed with respect to uc = 
Ea (F: shear rate), 

U~(x) = y e . .  (24) 

The case in which U ~(x) # O at the sphere center can 
be treated by superimposing a uniform streaming flow 
past a sphere, U~ U~(O) on the simple shear 
flow. 

In the general solutions of Stokes equation, (5) and 
(7), and of Brinkman equation, (8) and (10), the non- 
zero terms in this case are XI (with rank rn =-1),  P2 
and r 2 (each with rank m = 1). The coefficients A 21 
B2A and Cl.~ are obtained by solving the resulting al- 
gebraic equations from the boundary condition (3b): 

p~ = ] A~.~ (all r2 Y2,~ ',0, r ',25a) 
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and 

x; 

where 

B~'~ r } 
B~,~la) rZY2,~(0,r 

C,~ }r Y, , (0 , r  
C~._,(o) 

A~ (a')--A~., ( a ) = -  

(25b) 

(25c) 

50 '  ~ , (z)  
3{ ~o (o )+10  g,', ( a l l  

(25d, e) 

a212 "r (a) - ~,  (a)l (25f) 
B~ ( 0 ) =  6t r (a) +10 ~2 (a)[ 

1 
B{,, (0) = 6 I ~o (o-) +10 4/, (a)l  (25g) 

0'  ,k, (0) 
C~',_~ (c,) 2 g,,o (0  (25h) 

and 

CL , (a) 3 (25i) 
2 ~ko (,7) 

The velocity field exterior to the sphere can be 
readily evaluated by substituting (25) into the general 
solution (5) with all other spherical harmonics taken to 
be zero: 

e . •  3 x y 
u ~ = V ~ ( x )  + C ~ , (a) ~ T -  + ~ A,~ (0) r~:X 

+3B~,~ (0 ~7 7 . (:!6) 

it should be easily verified that the types of singulari- 
ties required for the construction of the solution, (26), 
apart from the primary flow are a rotlet, a stresslet and 
a potential quadrupole of the form: 

Rotlet " C ~ ~(0) uR(x;ez)  

�9 1 
Stresslet  ~ - A ~ , , ( a ) u ~ ( x  ;e~,e, ,)  

Potential Quadrupole " B~ (a)u**(x ; ex, ey). 

The dimensionless hydrodynamic torque on a po- 
rous sphere in the uniform shear flow can be evalua- 
ted from the rotlet and is equal to 

T = - 4 rrC,~ (a)e~. (27) 

The dimensional torque is T multiplied by ,uFa 3. This 
is the magnitude of the torque that is required to keep 
the sphere from rotating. Thus, a freely suspended par- 
ticle will rotate with an angular velocity that can be ea- 
sily determined from (19) and (27): 

1 
~9 = ~- e ~ (28) 

being nondimensionalized by uc =Fa. It is noteworthy 
1 that the angular velocity is ~-  of the vorticity vector in 

the primary flow irrespective of the permeability of the 
particle. 

In the limiting case of an impermeable sphere (i.e. 
o ~ co), the solution (26) reduces to 

1 5 u ~  e,)  

I upo( x . ex,  ey)  
6 

and by (27), 

T =  - 4roe, 

all being well-known results [cf. Burgers [191 and 
Chwang and Wu [18]]. 

Q U A D R A T I C  F L O W  

P a r a b o l o i d a l  f l o w  
As a further variation of the free stream, we consi- 

der a flow with a paraboloidal velocity profile 

U ~ ( x ) -  (,~y~--z~)e~, P~(x) = 2 ( ~ + l ) x  (29a, b) 

past a porous sphere of radius a, centered at origin (in 
this case ur = Ka 2, Pc =/aKa, with proportionality cons- 
tant K). The paraboloidal flow may be either elliptic or 
hyperbolic depending on the sign of the parameter ~. 
When ~ = 0, the paraboloidal flow degenerates into a 
2-dimensional flow. For ~>0, it represents Hagen-Poi- 
seuille flow through a tube of elliptic cross-section. Hy- 
perbolic paraboloidal flow (~<0) may not exist physi- 
cally, but it can certainly serve as a local component of 
complicated flow. An off-centered paraboloidal profile 
is equivalent to a centered one superimposed on a uni- 
form streaming flow plus a linear shear flow. 

Let us, first, consider a simple case of an axisym- 
metric paraboloidal flow with ~ = 1. In view ol! the axi- 
symmetric nature of the problem, it is clear that the 
solution must be independent of the azimuthal angle 
r so that the only nonzero coefficients in the general 
solution are those with m = 0. In addition, ;(,, = 0 for 
~,11 m. The remaining spherical harmonics can be de- 
termined from the boundary condition (3b) at the 
sphere surface in combination with the prescribed 
flow field at infinity that is incorporated into the gene- 
ral solutions, (5) and (8)�9 One eventually obtains 

pO } = {DO.o(a)} rnY~o(O , r  and3 
p~ D~,o a) ' 

(30a) 

r176 = IE~'~ r n y ~ o ( O , r  3 
r E~,0 (a'l ' 

(30b) 
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where 

D~o(a> = 

: l ) [ . o ( a l - 4  

Ds : 

E~, ,, I~) = 

E~(,(a) 

and 

(30c, d) 

= D ~ , o ( a )  (30e, f) 

314 ~ o ! a ) -  14 ~ , (a )  
512 Po~al + 2 a  ~ p, la +3  p,(a::l 

a ~ 7", (a )4  10 ~2 ';a)I 
- 512~0(a) - 2 a  ~pt a) " 3 ~ r  (30g) 

2 (3 4 aa 

(30 h ) 

(30iI 

, 2 
E,.,, a~ = -  (30j) 

21~15p,(a) Jr ~ 'k,(a)l  

The velocity field exterior to the sphere, correspon- 
ding to the exact solution (30), can be expressed in 
terms of the fundamental singularity solutions of Sto- 
kes flow. [t is a simple matter to determine lhe requi- 
red singularities that generate the disturbance flow due 
to the presence of a porous sphere immersed in the 
primary flow U~(x) = (y2 + z2)e .  

I _ D  o , 0 2 i I ! 6 3.0 ICr,, gX~l Us(X ; e z )  + 3,1)D~o (a',, 

1 0* 

(31 ) 

in which us(x; e:,) and Up(X; ex) denote the fundamen- 
tal solutions for a Stokeslet and a potential doublet 
located at origin. As suggested by the variable velocity 
gradient of the primary flow we need an axial Stokes 

quadrupole O*u.~ (x;e:,) and a potential octupole 
Ox 2 

-~2 UD(X ; e:,)that is associated with the Stokes quadru- 

pole to balance the power-law variations of the solu- 
tion in r [cf. Chwang [20]]. 

Although the primary flow has a pressure gradient, 
VP~(x) = 4e~ hence producing a 'buoyancy effect' on 
the sphere, this buoyancy force must be baianced by 
the net effect of the viscous stress, V2U~(x)= 4e~, of 
the primary flow. The drag on the sphere therefore co- 
mes solely from the contribution of the Stokeslet: 
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F =  - 4 o ,. (32) 

(the dimensional drag is F multiplied by ~Ka3). [:'or a 
rigid impermeable sphere, Chwang and Wu [18] dis- 
covered the types of singularities necessary to construct 
the solution and evaluated the drag force from the Sto- 
keslet distribution, all being identical with the present 
solutions (31) and 32) in the limit of a ~ .  It is note- 
'worthy that the primary flow with Hagen-Poiseuille 
'velocity profile in a circular tube of radius R can be 
treated by superimposing a uniform streaming flow 
U ~(x) = R2e~ on a paraboloidal flow U'~(x) = _(y2 + z 2) 
e x .  

Let us now consider a more general paraboloidal 
flow, (29) with ~ # 0, past a porous sphere. It is simple 
matter to construct an exact solution for this problem. 
All we have to do for this is to determine a solution ei- 
ther for 

U ~ (x) = yr x (33a) 

or for 

U ~ (x) = z  2e~ (33b) 

owing to the linearity of the problem (i.e., supeq)osi- 
tion rule). However, the solution for (33a) [or (33b)] 
can be easily obtained by decomposing the exact solu- 
lion (31) for O~(x):=(.~+z2)ex into the two symmetr i c  

parts for 2-dimensional paraboloidal flows of (33a,b), 
in particular, for the primary flow U ~ (x) = y2e~, the 
velocity field exterior to the sphere is given by 

o , 2 1 
u x ) ~ y  e x • 1 7 6  ; e ~ )  

1 
~ ~ D3~ (a '). --oyUss!x ; e ~, e . )  

1 O ~ 
+ ~ E~,o(a) ~yffU,(X ;ex) (34) 

In obtaining (34) from (31), we have applied the identi- 
ties: 

o~yUss(X a ; e~  e~: +yzzUss(x ; e . ,e~)  

O ~ 
= ox2Us(X ; e . ) + u o ( x  ; e . )  (35a) 

a ~ 
+ ~z2JUD(X e , : ) = - - -  , ( x ; e ~ )  135b) 

I ~  ; Ox ,u 
and 

o us(x ; e , )  - ~-yyUs(X, e~) =uo(x  ; e~) (35c) 

As a matter of fact, the solution for U~(x) = z2e~ is the 
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�9 0 02 counterpart of the expression (34), w t t h ~  ~ ez and 
y '  y ' 

0 '  ey replaced by ~ z '  Ozz ~'-ey and e~,, respectively. The 

complete solution for (29) with an arbitrary ~ may be 
constructed by applying the superposition rule to the 
solution for each two-dimensional paraboloidal flour 
(33a,b). For instance, the total hydrodynamic force ac- 
ting on the porous sphere in the primary flow, (29), 
can be obtained as: 

F =  - 2 7 r ( l t ~ ) D ~ o  a)ex. (36) 

In this case the torque T is obviously zero. The drag, 
(36), may be regarded as associated with that on the 
same sphere in a uniform streaming flow of an equiva- 
lent velocity 

U ~ -  / l ~ ) l  , k , (o l -2 r176  �9 e .  (37) 
3 ~, l~ 

[see (14) for the drag on a porous sphere in a uniform 
streaming flow]. Thus, a freely suspended porous sp- 
here in the primary flow will translate witln a velocity 
given by (37). It is of interest to note that the velocity 
(37) is different from the surface average of the primary 
flow velocity (29a). In Figure 4, the equivalent velocity 

U~of (37) is plotted versus the dimensionless perme- 
ability. It can be noted that only for an impermeable 
sphere (i.e., o~  oo),does the equivalent velocity, U~ of 
(37), become the same as the surface average velocity, 

both having the value 1(1  +se }ex. 

S t a g n a t i o n - l i k e  q u a d r a t i c  f l o w  
Let us now turn to a stagnation-like quadratic flow 

with a velocity profile 

1 
U~(X) = ~ - ( l +  ~)x 2 e ~ -  ~xyey-  xze~ (38a) 

which obviously satisfies the creeping motion equa- 
tion if the pressure associated with it is 

t~ 
018 ~- 

+ 0.6~ 
F. 
~ 0.4 r 

I 
I 

0 2 -  

0 0  t ; i 

10 -3 10 -2 10 -1 1.0 10 
X/a 2 

Fig. 4. Equivalent  translat ional  velocity,  U~ of (37), 
as  a function of the d imens ion le s s  permeabi-  

P~(x) = ( l + ~ ) x .  (38b) 

The stagnation plane is defined by x = 0. Although this 
type of quadratic flow is of some intrinsic interest in 
serving as a local component of a more complicated 
flow in an unbounded domain, it plays an important 
role in determining a general motion of a particle near 
a flat interface. 

We consider, first, a simple case of an axisymmetric 
stagnation-like flow, (38) with ~ = 0. In this case, the 
exact solution for the flow fields exterior and interior to 
the sphere involves the nonzero spherical harmonics, 
p ,  andCn with n = 1, 3 and rn = 0, in the general solu- 
tions: 

p~, 4 

r / 7 - .Sn 

D~176176 / r'~ Y'' 0(0, r 
D.,o(a) n = l  and3 

o ' ' 

E,,ota)t " I r= Y='~ r 
E,~.o(~ n = l  and3 

~,39a) 

(39b) 

Here, the coefficients, D,,.0 and En,0 are given by (30c-j) 
in the preceding problem for a paraboloidal flow. 

The fundamental singularity solutions for :Stokes 
flow can be used in an interesting way to constrtlct the 
flow field exterior to the porous sphere that would be 
generated by the presence of the particle. The exterior 
velocity associated with the spherical harmonics pO 
and r o of (39) can be represented by a Stokeslet requi- 
red to produce a drag), a potential dipole (associated 
with the Stokeslel to account for the body-thickness ef- 
fect), an axial Stokes quadrupole (as suggested by the 
variable velocity gradient of U~(x)) and a potential 
octupole (associated with the Stokes quadrupole): 

1 DO 0 ~ , u ~  ~ ( x ! ~ - I I D o o ( a ) - ~ -  3,o(a)~xx,r 

u~(x  ; ex)  - {1D~'~ + 1 ~ E ~ 1 7 6 1 7 6  ' 

1 02 
- ~-E3~ (o) 0--x2 I u~(x ; ex). (40) 

The total hydrodynamic force on the sphere is evalua- 
ted from the contribution of Stokeslet: 

F = -2zDl~ (41) 

which reduces in the limiting case of an impermeable 
sphere (i.e.,a-,. ocJ to lira F = 2zex. 

Finally, we consider a more general quadratic flow, 
(38) with ~ ~ 0. The solution is an analogous to that of 
U~(x) = (~y2 + z2)ex in the previous example. In view 
of the linearity of the problem, it is sufficient to solve 
the primary flow 

U~(x) 1 2 (42a) - ~ - x  e x -  x ~ ,  

Korean J. Ch. E. (Vol. 5, No. 1) 
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Or 

1 U~(x) = ~ x % x -  xze~ (42b) 

in order to construct the exact solution for U=(x)given 
by (38). However, if we note that the prima~y flow, (38) 
with e= 1, consists of two symmetric components of 
(42a,b), then decomposing the solution (40) into the 
two parts we can easily determine the velocity field for 
each component flow. The result for the 2-demensio- 

1 x2e~,~:cye~., is nal stagnation-like flow, U~(x) = ~ 

o( 1 2 l l D o 0 ( a )  U X = = ~ x  ex-Xyey+ 

DO . 0 ~ 1 o ta) Ox--- ~ }u~(x ; e~)+ ~-E.  o o)  

- - [ - D ~ o ( a )  ---O u ~ + ( x ; e y  e , i  
60 Ox 

_ ~ l D ~ o ( a ) + _ ~ _ E ~ o ( a ) l  0 . , ~y  Uss(X ; ea, es) 

12 '32 , + E~ t O--Tzuotx ; ex) 

- 2 O-~-~y ao(x ; e:,)t.  (4~.) 

In obtaining the above expression for the velocity field 
around a porous sphere from (34), we have applied the 
identities, (30a,b) and 

~xUSS(x;ey, ey) -~ u~,s(x ; e~, e~ '  

,0 ~ , 

Ox-%U~(X ; e~) (44a) 

,9 ~ 
Ox2Uo(X ; e~',, !44b) 

between the fundamental singularity solution of creep- 
ing motion equation. Consequently, the solution for 
the 2-dimensional stagnation-like flow of (42b) can be 

c3 in=mediately determined on replacing : -  and ev in (43) cry - 
by~F z and e~, respectively. This completes the solution 

for U '(x) of (38) with an arbitrary ~. 
The hydrodynamic force acting on the sphere im- 

mersed in the primary flow, U~(x) of (38) is thus given 
by 

l~--  - rrll - ~ D  ~ e ~ .  (45~ 

When o'+~, Equation (45) reduces to the drag for the 
case of an impermeable sphere, and is identical with 
the result of Chwang [20] for 6 = O. 

This completes the solution for a porous sphere im- 
mersed either in a linear shear and an axisymmetric 
straining flows or in a quadratic paraboloidal and a stag- 
nation-like flows of (29) and (30). As we shall see in the 
forthcoming part 2 of the present paper, these solu- 
tions play an important role in determining the gene- 
ral motion of a porous particle in the vicinity of a plane 
fluid-fluid interface. 

DISCUSSION 

In the previous sections, we have analyzed the mo- 
tion of a porous sphere through a linear or a quadratic 
mean flow at infinity in an unbounded single-fluid do- 
main. The linearity of the problem enables us to deter- 
mine the translational and angular velocities of a freely 
suspended neutrally buoyant porous sphere in the pre- 
scribed flow: 

1~ T 
U 4n.AO0(o), ,-Q=8nClO.0(a) . (46a, b) 

Here, F and T are the hydrodynamic force and torque 
acting on a stationary porous sphere due to the exis- 
tence of a linear or a quadratic flow at large distances 
from the particle. Thus, given the initial particle posi- 
tion, these equations (46a, b) provide its complete tra- 
jectory in the flow. As a simple illustration, we deter- 
mine the trajectory for a porous sphere freely suspen- 
ded in an off-centered paraboloidal flow, U+~ 
{ ~ (y-y0) 2 + (Z-Zo)2}e:. that is equivalent to a centered 
one (i.e., with Yo = Zo = 0) superimposed on a uniform 
streaming flow plus linear shear flows. The result is 

U=I~y2oq-zl  ~4 1 + ~  l * , ( a ) - E C ' 2 ( a ) t  / 

(47a) 

and 

1 1 
, Q = ~  `6yoe~.- 2-Zoey. i47b) 

The trajectory equations (47a,b) are relevant to tl. 
prob}em of a porous sphere freely suspended at an ar- 
bitrary point in Poiseuillian flow through a cylindrical 
tube of elliptic cross-section. 

It has been found that, in the case of dilute suspen- 
sion, the contributions to the bulk stress from the vari- 
ous particles are independent, and the contributions 
arising from the bulk rate of strain can be characteri- 
zed by a stresslel in the pure straining motion of the 
ambient fluid [cf. Batchelor [21]]. When the suspen- 
sion has a wholly isotropic structure, the effect of the 
presence of the particles is simply equivalent to an 
increase in the shear viscosity of the suspension. The 
magnitude of this increase, expressed as a fraction of 
the viscosity,u of the ambient fluid, is linear function of 
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0.6 "\, 
~x x 
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Fig.  5. V i scos i ty  constant ,  A, a s  a funct ion  of the  di- 
X 

m e n s i o n l e s s  p e r m e a b i l i t y  ~ ;  - - ,  for the  ex- 

act  so lut ion  of (48); . . . .  , for the  a sympto t i c  
so lu t ions  of {49a,b). 

the concentration of the particle by volume, and the 
constant of proportionality A depends on the constitu- 
tion of the particles, In particular, for the case of a sus- 
pension of identical porous spheres, the viscosity cons- 
tant A is given by 

,1 -= - --1 A~,.(0.) (48) 
4 ~ ' 

which is the magnitude of the stresslet strength. When 
a--,.r a--. O, Kojima [13] evaluated asymptotically the 
viscosity constant A that can be readily reproduced by 
applying the asymptotic properties of spherical Bessel 
functions to A~ 

5 , )  , 
A = ~ -  ( 1 - 3 a  +0(0.  -~) as a --* oo (49a) 

and 

A= vaYdal ~ ( 1 - 2 o ~ ) + 0 ( a  ~), a - "  O. (49b/ 

In Figure 5, the viscosity constant A of (48) is plotted 
versus the dimensionless permeability. Also shown for 
comparison are the corresponding asymptotic solutions 
of (49a,b). It can be noted that the asymptotic forms 
provide an excellent approximation in the limit of lar- 
ge or small permeability. 

It is worth commenting that the scope of the analy- 
sis can be readily extended to determine the particle 
motion in any general linear or quadratic flows in the 
presence of a plane interface. However, it should be 
mentioned that the undisturbed flow be compatible 
with the presence of the interface, In conclusion, we 
can also solve for an arbitrary motion of a particle in 
the presence of a deformable interface by means of a 
surface distribution of fundamental singularities (i.e., 
integral representation of fundamental :solutions) for 
both Stokes and Brinkman equations. 
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N O M E N C L A T U R E  

o 
Anm D~,~ 

ex ,  ey,  e z 

F 
I,. } (or) 
3: 

K 
4 
L 

P 
Pc 

P,~, r X~ 
W(x) 
(r,O,r 
T 
U 

I1 c 

UD 

ujy) 

US 

USS 

U 
U~(x) 
X 

,ff 

7 
F 
A 
,u 

s 
0. 

F 

sphere radius 
coefficients of spherical harmonic p, of 
order n rank m 
coefficients of spherical harmonic r of 
order n rank m 
coefficient of spherical harmonic Z,, of 
order n rank m 
base vectors in the Cartesian coordinate 
system x,);z 
hydrodynamic force 
modified Bessel function of order n + 1 
permeability 2 
flow parameter 
characteristic length scale 
strain rate tensor 
pressure field 
characteristic stress scale 
solid spherical harmonics of order n 
undisturbed pressure field 
spherical coordinate system 
hydrodynamic torque 
velocity field 
characteristic velocity scale 
velocity for potential doublet 
velocity for potential quadrupole 
velocity for Stokeslet 
velocity for stresslet 
translational velocity 
undisturbed velocity field 
position vector 
surface spherical harmon!c of order n 
rank m 
Stokeslet 
potential doublet 
rotlet 
shear rate 
viscosity constant 
viscosity of fluid 
angular velocity a2 
parameter defined by 0 .2 = --  

x 
stress field 
flow parameter 
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