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Abstract—Exact solutions in closed form have been found using the eigenfunction-expansion method
for various linear and quadratic flows of an unbeunded incompressible viscous fluid at low Reynolds number
past a porous sphere with a uniform permeability distribution. The linear flows considered here are a simple
shear and an axisymmetric uniaxial straining flows ard the quadratic flows include a unidirectional parabol-
oidal and a stagnation-like flows as tvpical representations. The theoretical analysis determines a general mo-
tion of a freely suspended particle in the prescribed mean flow at infinity. Then the solutions are expressed in
terms of fundamental singularity solutions for Stokes flow which will be applied to examine the motion of a
porous sphere in the presence of a plane fluid-fluid interface in the forthcoming part of the present paper.

INTRODUCTION

This paper examines a problem in which a porcus
particle is immersed in either a linear or quadratic
mean flow at infinity in an unbounded single-fluid do-
main. The flow of viscous fluid past a porous particle
has been a problem of long-standing interest, corres-
ponding to various types of application. For example,
an arbitrary motion of a porous particle through a fluid
at rest at infinity is relevant to sedimentation pheno-
mena of flocs and particle clouds [cf. Qoms et al.[1];
Felderhof and Deutch [2]; Felderhof [3]; Matsumoto
and Suganuma [4]; among others]. Particle motion in
more general flow fields such as pure straining flow is
relevant in suspension mechanics, and to some as-
pects of the modeling of polymer molecules to account
for the hydrodynamic interaction between polymer
segments [cf. Felderhof [5]; Deutch and Felderhof
[611.

The study of the porous media problem begins
with Darcy's law, according to which the average fluid
velocity is proportional to the average pressure gra-
dient. Darcy’s law has been applied to various pro-
blems involving flow through porous media and has
proved to be reliable model for creeping flow in the
interior of statistically homogeneous isotropic mate-
rials. Despite of its success for interior flow, Darcy's law
is not a complete model for a porous medium of finite
size bordered by regions of pure fiuid. Under normal
circumstances, we require continuity of velocity and
surface stress across the boundary; however, this is
not possible due to the reduced order of Darcy’s law as
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compared with the Stokes equation. To circumvent the
singular behavior of Darcy's law at the boundary, Bea-
vers and Joseph [7] proposed, on heuristic grounds, a
slip boundary condition which allows discontinuity in
the fluid velocity across the particle surface. Saffman
[8] and others have offered theoretical justification on
the slip condition of Beavers and Joseph. A second ap-
proach to the problem of matching the interior and ex-
terior flows is to replace Darcy’s law with Brinkman
equation of the same order as the Stokes equation.
Brinkman equation is based on a prima facie as-
sumption that the resistance due to the solid inclusions
is proportional to the local relative velocity of the fluid
and solid phases [cf. Brinkman [9]; Debye and Bueche
[101]. It is however made with reliance on physical
intuition and the a posteriori justification by the success
of the hypothesis [cf. Larson and Higdon [11] and re-
ferences therein]. Howells [12] determined the
Green’s function (i.e., the fundamental solution for a
point force) of Brinkman equation to calculate the drag
on an impermeable particle immersed in an isotropic
porous medium comprised of a random array of parti-
cles, and gave justification of Brinkman's model as
providing a first approximation for the mean flow past
a sphere in the case of sparse distribution. Kojima [13]
employed the Green’s functions for Stokes equation
and for Brinkman equation as found by Howells to
construct integral solutions valid in their respective do-
mains,-and outlined the method for calculating the
translational friction and the intrinsic viscosity for di-
lute suspensions of porous spheres by considering
asymptotic forms of the integral equations for large or
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small permeability limit. In another study, Matsumoto
and Suganuma [4] measured the settling velocity of
model flocs of steel wool and found good agreement
with the velocity predicted by Brinkman equation. In
practice, Brinkman equation appears more useful, be-
cause it incorporates a more fundamental analysis and
embodies a well-defined stress tensor.

In the present effort we examine the case of a po-
rous sphere immersed in a Newtonian fluid in an un-
bounded domain which is undergoing a linear or a
quadratic mean flow at infinity. The method of solu-
tion employed here is the eigenfunction-expansion for
both Stokes and Brinkman equations in spherical co-
ordinate system. The linear flows considered here are
a simple shear and an axisymmetric straining flows
and the quadratic flows include a unidirectional para-
boloidal and a stagnation-like flows. The theoretical
analysis determines a general motion of a freely sus-
pended particle in the prescribed miean flow. Then the
solutions are expressed in terms of fundamental sin-
gularity solutions for Stokes flow to investigate the mo-
tion of porous particles in the presence of a plane fluid-
fluid interface in the forthcoming part of this work.
The solution scheme for the latter problem is the re-
flections-method in conjunction with the correspon-
ding solutions for an unbounded single-fluil domain
(cf. Lee et al. [14]; Yang and Leal [15]].

BASIC EQUATIONS

We begin by considering the governing equations
and boundary conditions for the flow fields both inte-
rior and exterior to a porous sphere immersed in an in-
compressible Newtonian fluid which, at large distance
from the particle, is undergoing an undisturbed flow
defined by a velocity U (x) and pressure P (x). The
variables in this analysis may be considered o be non-
dimensionalized with respect to the characteristic vari-
ables: u, (velocity), [.= a(length, i.e., sphere radius a)

u, . .
and pcz’g;f(stress). We take a coordinate system in

which the particle is placed at origin, x = (x, y, z) being
the position vector, and e,, e, and e, the base vectors
in the x, y, z directions, respectively. It is assumed that
the Reynolds number for the motion is sufficiently
small that the quasi-steady approximation is appli-
cable. The equations of motion therefore reduce to ste-
ady Stokes equation plus continuity equation for the
flow outside the patrticle, i.e.,

V= -Vp'+Vvi’=0 (1a)
v-u®= 0 (1b)

where the superscript “o” denotes the flow field exte-
rior to the porous sphere.
The flow of a viscous fluid through an isotropic po-
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rous medium can be analyzed by studying a simple
continuum model, consisting of a random array of so-
lid objects which is permeable to the flow and exerts a
friction proportional to the local relative velocity of the
fluid and the solid phases:

2
v - Z’i — -Vp‘ + vzui :%“t (23)

vt =0 (2b)

in which the superscript “i” represents the flow field
interior to the sphere. The Brinkman equation, (2a),
proposed independently by Brinkman [9] and Debye
and Bueche [10], is based on the creeping motion
equations for low Reynolds number flow with an addi-

2
tional friction ;’—u' to account for the local resistance
arising from the discontinuities in shear stress and

2
pressure across the solid phases. We can identify-gz— u'

as the force per unit volume that the fluid exerts upon
the solid surface beyond the hydrostatic force and be-
yond any force attributable to the ambient pressure.
When the viscous term is omitted in (2a), the Brink-
man equation reduces to the Darcy’s law for a porous
medium with the permeability x. Although (2a) was
originally derived from heuristic arguments, it has
since received theoretical and experimental justifica-
tion from numerous authors [e.g., Howells [12]; Fel-
derhof and Deutch [3]; Matsumoto and Suganuma [4];
Larson and Higdon {111 and others].

The boundary conditions for the equations, (1) and
(2), are

u®—-U=(x), p° = P~(x) as r=|x| = oo (3a)

plus the continuity of velocity and of the stress force
across the sphere surface, i.e.,

w=u' n-t’=n-¢c' at r=1 {3b)
where n is the unit normal to the sphere surface.

We now derive a general solution of the Stokes
equation (la) and Brinkman equation (2a) plus the
continuity equations (1b} and (2b) in terms of the fun-
damental eigenfunctions for a spherical coordinate
system(#, ¢, 8). According to (1) and (2) the pressure
fields, p°(x) and pf{x) are harmonic functions, i.e.,

vzpo:vzpi — O (4)

and can therefore be expressed in terms of solid sphe-
rical harmonics. We shall now specialize the general
solution to separate domains involving the regions
interior and exterior to the porous sphere.
General solution exterior to the sphere

For the situation in which the disturbance flow due
to the presence of the particle is required to vanish at
infinity {i.e., boundary condition (3b)], Lamb [16] outli-
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nes a general solution of the creeping motion equa-
tions in a series of solid spherical harmonics:

D

p°(x) = P=(x) + E" 2n¢1 (5a)
and
n=1 r r
S R ) nt+1 _ pg
2n2n-1)" 1 nizas 1)x,,.2n+:.j

(5b)

where p], ¥? and ¢9 are solid spherical harmonics of
positive order n.

We now evaluate the stress vector (i.e., surface for-
ce, n-7) acting on the surface of a sphere in order to
determine the flow fields from satisfying the boundary
condition (3b). The stress vector r-r on the sphere, in
general, can be expressed as

ner= - X2ty Lo g
r or T T

for an incompressible Newtonian fluid [cf. Happel and
Brenner [17]]. By means of the general solution (5),
Equation (6) can ultimately be expressed in the form:

w 9 %
neet e+ £ (- te) THEE

, $n 2n° 41 P
2 (nt2) 7 - —x
2(n+2) P pop— 1) pinet

nf-1 Pa J
n(zn_ 1) 'V el

where 7= (x) is the stress field generated by U”(x) and
P~ (x).
General solution interior to the sphere

A general sulution of the Brinkman equation plus
the continuity equation can be also derived in terms of
solid spherical harmonics p,, X, and ¢/, of positive
order n and the modified spherical Bessel function

Joorlns(on of ordern + % (the condition of boun-

dedness of the velocity at origin limits us to positive
harmonics}:

') = £ pt (82)

and
nt(x)= }fl[ —%Vp;— Yrn (o7) F Xn X X
n= led

+1n+1) ¥y (07) Fnva,, (or) o’ r?

Vo —n@nt1) Yon, (o7) a=x¢;} &)

.4

in which ¢ is defined by 7‘1—2 — 5z, the dimensionless

permeability. Here,

Valari= ST lon) VL (o 9a)
has the special properties:
. inh
‘ﬁ'ﬂ (Z) = Sm{ é‘, '/"n = \l"n 1 ) (9b)

The stress vector n-z* interior to the sphere can also
be expressed by utilizing the general solution (8) in
combination with (6):

n-zt(x) :%“; [—Qn(ar)v,}':ﬂ(x

- ‘2_2 (n—1)Vp,—piX+R,(cr)V ¢!

g

- fi';-l Salor) g x] (10a)
where
Qn(E) =& Y () (= 1) ¥ (2) (10b)
R, (g) = (at+1)18 ¥ (§) F2@m—1) ¥ru-y (O
T8 Yo (O ¥ (O (100)
and
Sa(g)=ng " ¥ (§) = e (DL (10d)

It should be noted that the general solutions defin-
ed by (5) and (8) automatically satisfy the governing
differential equations, as well as the condition (3a) of
vanishing disturbances in the far field. All that re-
mains is to satisfy the boundary condition (3b}) at the
sphere surface, according to which the fluid velocity
and surface force must be continuous across the sur-
face.

This completes our derivation of the general solu-
tion forms for the flow fields both exterior and interior
to the porous sphere. We shall turn shortly to the ap-
plication of these solutions for the problem in which a
porous sphere is immersed in a viscous fluid that is un-
dergoing a mean flow at infinity. It is worthwhile stu-
dying the motion of porous particles in a mean flow,
not only because it is interesting in its own right but
also because the solution leads to a resolution of the
general suspension rheology of entangled polymer
molecules or flocs. The problem is also relevant to the
resolution of the boundary effects on the particle mo-
tion via a normal reflections-type calculation proce-
dure. When a particle moves in the vicinity of a fluid
interface, the presence of the interface will induce a
‘reflected’ velocity field. The leading terms of the inter-
face reflections include uniform streaming flows, lin-
ear shear and uniaxial straining flows, and quadratic
paraboloidal [i.e., U™(x)=K (£)*+ z9e,] and stag-
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Fig. 1. Schematic diagrams for (a) a linear shear flow
U~(x) =I"-x, (b) a uniaxial extensional flow U~
(x)=E-x, (c) a quadratic paraboloidal flow U~
(x) = K(€y? + z%)e, and (d) a quadratic stagna-
tion-like flow U= (x) = K[1/2(1 + ¢ }x?e,~£xye,
—xy?e;]
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nation-like [i.e., U* (x)=K {%(1 +£ e, ~Exye,
-xze, }] flows [15). Thus, in order to analyze the mo-
tion of particles near a plane interface using the reflec-
tions-method in conjunction with the fundamental sin-
gularity solutions for Stokes flow, we niust determine
the spatial distribution of fundamental singularities
{e.g.. Stokeslets, rotlets, stresslets and higher order sin-
gularities) that generates the same disturbance miotion
as the presence of the particle in an unbounded fluid
domain [14, 15]. In the following, we shall examine
the case of porous sphere which moves either in a lin-
ear flow or in a quadratic flow as depicted in Figure 1.
The solution will then be expressed in terms of the
fundamental singularily solutions of creeping motion
equalion, which will be used in the forthcoming part 2
of the present paper to study particle motions in the
presence of a flat fluid interface. First, however, in
view of the linearity of the problem it is necessary to
deterniine the general motion of a porous particle in a
quiescent fluid in order o analyze an arbitrary motion
in a mean flow at infinity.

TRANSLATION AND ROTATION IN A
QUIESCENT FLUID

Let us now consider the specific problem of a po-
rous sphere which is translating or rotatirg in a qui-
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escent fluid. We choose, for convenience, a nioving co-
ordinate system in which the particle is at rest with
center of mass at origin. In it, a uniform streaming
flow, U~ (x)=-e, or a rotational flow, U~ (x) = -e, x
X, around a stationary particle is precisely equivalent
to translation (U = e} or rotation (Q = e,) with respect
to the fixed frame of reference in a quiescent fluid. It
should be noted that the undisturbed flow velocity U™
(x) is normalized by the translational or angular. velo-
city, U or 2, of the particle in the fluid at resl at infi-
nity. Owing to the linearity of the problem, fistt, we
can analyze the streaming flow past a porous sphere,
separately from the rotational flow, by utilizing the
general solution forms (5), (7), (8) and (10). The most
convenient method for doing this is to make the foll-
owing substitutions into the general solution forms:

1 Pa, Pn, Xnt ._,T,nm:zn:ﬂ 1A m Bn‘m' cn.m‘ Yn.m(p‘ ¢)
(11)

where Y, ,{6.¢) is the normalized surface spherical
harmonic of order n and rank m. All that is required
is a specification of the undisturbed velocity U (x) and
pressure P~(x) in terms of spherical harmonics; name-
ly, the coefficients 4, , Bn.m and C, 5, in (11), and solu-
tion of the resulting algebraic relationships from the
boundary condition (3b) at the particle surface. The
nonzero spherical harmonics, determined from the
boundary condition (3b), are

H ALyla)
Z‘ } - { A «Z) }T Viol8: 8) (12a)
y Bf.o‘:
{Z‘}= {B‘ ’a; }' Yia(0, ¢) (12b)
1 1,0‘\0
where
0 _ 4 » 30’ ¢, (o)
Al (o) =Al(a) 29a(0) £ 207 ¥ (a) 13 Yor(0)
(12¢, d)
B° ( ):_ Uz{Z'S"z(U)“P‘x(C')i
notd 2124 (0) +20° ¥, (0) +3 ¥, (o)1
(12e)
and
B!, (o) = 1 (12f)

2% (0)+20 ¥, (0) =3 ¥, (a).

The solution, (12a,b), specifies completely the ve-
locity and pressure fields exterior and interior to the
porous particle. In particular, the velocity field exterior
to the sphere is thus given by

e, X

u”(x)=U”(x)+%A§’,o(a)(—+ 3|
T T
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+BLu (o) (55~ szx, 13)

T

It can be easily seen that the disturbance velocity due
to the presence of the particle in (13) is precisely the

same as that induced by the Stokeslet ¢ = é— Al o(o)e,

and the potential dipole g=-B’ o o)e, located at the
sphere center. As o~co, Equation (13) reduces to the
velocity field for the case of a rigid impermeable sp-
here, and is identical with the flow generated by the

singularities, a = % e, and g =- Lex at origin [cf.

4
Chwang and Wu [18]].
As there is no contribution to the drag force from
potential doublet, the drag on the sphere is simply
given as:

F=—-47A0 (0)es (14)

(The dimensional drag force is F multipl:ed by «Ua).
When either o —( or g—+co,i.e., in the limit of large or
small permeability, the leading terms in (14) can be
determined from the asymptotic properties of modified
spherical Bessel functions:

F=—'§—nazll— %a'+0(a‘)}ex as ¢ =0
(15)

and
F=—6n{1—%+0(o“’)te, as ¢ ~ o (16)

which are identical with the asymptotic solutions of kKo-
jima [13]. In Figure 2, the drag of (14) is plotted as a
function of the dimensionless permeability. The drag
asymptotically calculated by Kojima is also shown in
the figure. It can be seen that the approximation solu-
tion shows reasonably good agreement with the exact
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Fig. 2. Dimensionless drag force, 6 7;;(7‘1, as a fun-

ction of the dimensionless permeability 533

—, for the exact solution of (14); - - - -, for the
asymptotic solutions of (15,16).

solution over the entire range of permeability.

We now turn to the case of a stationary sphere im-
mersed in the rotating fluid with a constant angular ve-
locity Q= -e, (i.e., U” (x) = -e, X x). As in the prece-
ding example, the solution that satisfies the boundary
condition at the sphere surface can be simply repre-
sented by spherical harmonics

%4 o (o)
{x‘} - {C‘ (o) }r Yial0.9) (17a)
where
o =£2 ‘/’2(0) f _ 3
Clale)= =5 (o ™4 Clelo) =55
(17b, ¢)

All other spherical harmonics in the general solution
forms, (5), (7), (8) and (10), are zero. The velocity field
exterior to the sphere, given by the spherical harmo-
nics X$is

Cs (o) |

I
u°(X)=~ (e, xXX) 11— | (18)

-
in which the disturbance velocity can be also genera-
ted by a rotlet y= C/((o)e,, at the sphere center. It
should be noted that ,when o0, the solution (18} re-
duces to the case of a rigid impermeable sphere (i.e.,
Clo(0)—1).

The torque exerted on the sphere by the rotational
flow can be easily calculated from the strength of the
rotlet:

T~ -8xrCl,lolex (19)

The dimensional torque is given by T multiplied by the
factor #Qa®. In the limit of small permeability (i.e.,
¢ oo) one obtains for the asmptotic behavior

e, as g+

T=-8nx Il 1—%'%0(0‘2)

(20a)

and for large permeabilities, o —0, one has
= - %rtaz 1- *22—1024" O(o* }e; as ¢ — 0.
(20b)

The present solution (19) agrees with that in Felderhof
and Deutch [2] based on an ad hoc ansatz involving
separation of variables in axisymmetric spherical co-

ordinate system (i.e.,% = (). In Figure 3, the hydrody-

namic torque, (19), is plotted as a function of the di-
mensionless permeability. Also shown for comparison
is the corresponding approximation solution of (20a,b).
There is very good agreement between the two solu-
tions in the limit of large of small permeability.

Korean J. Ch. E. (Vol. 5, No. 1)
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Fig. 3. Dimensionless hydrodynamic torque 3
Srulla

as a function of the dimensionless permeabi-
x
lity ah for the exact solution of (19);- - - -,

for the asymptotic solutions of (20a,b).

LINEAR FLOW

Axisymmetric straining flow

We consider the simplest case of an extensional
flow (also called ‘hyperbolic flow’) past the present po-
rous sphere with an axisymmetric free stream

U~{x)=Lx

where the strain rate tensor L = {L;} is defined by L;=
3640,~-8; and nondimensionalized with respect to
the strain rate L (i.e., u.= La). In this case, expanding
U™ (x) and P”(x) in terms of spherical harmonics, it
can be easily shown that all terms in the general solu-
tions, (5), (7), (8) and (10), vanish except for n=2,
m =0 and X, =0. The coefficients A, 4, B, , can be cal-
culated from satisfying the boundary condition at the
sphere surface:

: A7, )
R T
D2 2.0 \CO
; B, (o] )
{z}:{ . Eai Y. (6,9) (21b)
2 2.0 \O/
where
10¢° ¢, (o)

Ag-o (0"‘ =Azi,o (U) =

T Yo (0) F10 ¥, (o)

(21c, d)
B° . () zi‘z 1/"o (0') - 30 1/’2 (/C") -50° ‘/"z (0>
SRR Yy (o) +10 ¥, (o)
(21e)
and
B¢ o ‘/U() = —"'f-;,_‘ (Zlf}
= ’ Yo lo) +10 ¢, (o) .
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The fundamental singularities required in construc-
ting the present exact solution for the velocity field
exterior to the porous sphere,

u®(x) = U=(x) +%A;o (017 Yoo (8. ¢)x

+B2o(0)Vir™ Y, (8, )1, (22)

are easily seen to be a stresslet and potential quadru-
pole of the form:

Stresslet | — A7, (o) us(x ;e e,)

Hk[r—t

. 1
Potential Quadrupole ; = BJ, u,,(x ; e, e,).

2

[cf. Chwang and Wu [18] for the fundamental solution
forms of ugs and upl. It should be noted that, when
700, the present solution for the velogity field exterior
to the sphere reduces to

u’(x)=U"(x)— %u3s(x ;e e,)

—?upq(x;ex,e,) (23)
which is identical with Chwang and Wu's [18] result
for the case of a rigid impermeable sphere.

All of the preceding examples are concerned with a
porous sphere immersed in an axisymmetric undistur-
bed flow, and thus the rank m of the spherical harmo-
nics is consequently zero. We now proceed to consider
non-axisymmetric undisturbed flows (e.g., simple
shear flow) with nontrivial azimuthal dependence (i.e.,

el
EY! #0).
Liner Shear flow

An incompressible Newtonian fluid is in steady
shear flow past a neutrally buoyant porous sphere
which is freely suspended in the fluid. The fluid veloci-
ty at infinity, nondimensionalzed with respect to u. =
I"a (I": shear rate),

U=(x)=ye,. (24)

The case in which U”(x) # O at the sphere center can
be treated by superimposing a uniform streaming flow
past a sphere, U"(x)=U"(0) on the simple shear
flow.

In the general solutions of Stokes equation, (5) and
(7), and of Brinkman equation, (8) and {10), the non-
zero terms in this case are X (with rank m = -1), p,
and ¢, (each with rank m = 1). The coefficients A, ;,
B,, and C, ., are obtained by solving the resulting al-
gebraic equations from the boundary condition (3b):

p? | AL (e, , e
las, (o |7 e 0 2

Pt |
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# | | Bllo) } | -
- ty, . (6, 5b)
{gﬁf [T Bl (o) |7 Tt 25b)
and
g Co\( o .
{X_ } - { b Y. (6. ¢) (25¢)
X Ci_i(a)
where
o f At 507 ¥ (o)
A2l \ ,)_Azl,l \ = S 2 N
alo =3 (0) 10 ¥, (o) |
(254, e)
o . 24y (a) — ¥, (o)} )
B, (o) = St o 5
2 e (0) 210 ¥, (o) (@56)
Bl (o) = 1 (25g)
T B Y (0) F10 9, (o)) -8
0 (Y — a’ 1’2 (0') .
Coolo) =S (o) (25h)
and
3 .
. _ .
Ci_ (g) % (o) % o). (251)

The velocity field exterior to the sphere can be
readily evaluated by substituting (25) into the general
solution (5) with all other spherical harmonics taken to
be zero:

x R
W) =U*&)+C°_, (o) e‘r," +%A;’,l(a) By
+3BL, () (26)

it should be easily verified that the types of singulari-
ties required for the construction of the solution, (26),
apart from the primary flow are a rotlet, a stresslet and
a potential quadrupole of the form:

Rotlet : C7_ (o) uglx;ey,)

Stresslet . "l—AZ, (o) ugslx ;e e,)

2
Potential Quadrupole . By, (dlu,(x ; e, e,).

The dimensionless hydrodynamic torque on a po-
rous sphere in the uniform shear flow can be evalua-
ted from the rotlet and is equal to

T=-47C7_,(d)e. (27)

The dimensional torque is T multiplied by zI"a® This
is the magnitude of the torque that is required to keep
the sphere from rotating. Thus, a freely suspended par-
ticle will rotate with an angular velocity that can be ea-
sily determined from (19) and (27):

1

Q=—2~ez (28)

being nondimensionalized by u. =I"a. It is noteworthy
1
2
the primary flow irrespective of the permeability of the
particle.
In the limiting case of an impermeable sphere (i.e.
@ — oo}, the solution (26) reduces to

that the angular velocity is — of the vorticity vector in

W) =Ux)+fuyx e - Sugixene,)
1 .
—‘(;“po(x ;e e,)

and by (27),

=—-4re,

all being well-known results [cf. Burgers [19] and
Chwang and Wu [18]].

QUADRATIC FLOW

Paraboloidal flow
As a further variation of the free stream, we consi-
der a flow with a paraboloidal velocity profile

U=(x)=(&y*tz¥e,, P (x)=2(£+1)x (29a,b)

past a porous sphere of radius a, centered at origin (in
this case u. = Ka?, p. =uKa, with proportionality cons-
tant K). The paraboloidal flow may be either elliptic or
hyperbolic depending on the sign of the parameter £ .
When ¢ =0, the paraboloidal flow degenerates into a
2-dimensional flow. For £>0, it represents Hagen-Poi-
seuille flow through a tube of elliptic cross-section. Hy-
perbolic paraboloidal flow (£<0) may not exist physi-
cally, but it can certainly serve as a local component of
complicated flow. An off-centered paraboloidal profile
is equivalent to a centered one superimposed on a uni-
form streaming flow plus a linear shear flow.

Let us, first, consider a simple case of an axisym-
metric paraboloidal flow with £=1. In view of the axi-
symmetric nature of the problem, it is clear that the
solution must be independent of the azimuthal angle
#, so that the only nonzero coefficients in the general
solution are those with m = 0. In addition, ¥, =0 for
all m. The remaining spherical harmonics can be de-
termined from the boundary condition (3b) at the
sphere surface in combination with the prescribed
flow field at infinity that is incorporated into the gene-
ral solutions, (5) and (8). One eventually obtains

pn D2, (o)
% = { ’ d.) ™™ Y,,(8, ¢),n=1 2and3
p:; D:y,,o (0)
. (30a)
¢‘?L E;JI,O ((7) |
{ } = { p " Y, (8, ¢),n=1and3
¢111 Eftl,l) (U’)

(30b)

Korean J. Ch. E. (Vol. 5, No. 1)



30 S.M. Yang and W.H. Hong

where
De o — 20812 Y l0) — Y, (o1}
Lo lO = ] 2 -
29Y5t0) +20° Y la) +3 ¢ (o)
=Di,lo)—4 (30c, d)
20% ¥ lo) o )
Digiol)= ‘ "'“f — =Di,(a) (30e,f)
15y (a)+ 7 9 (o)
Eo i) — 34 Ylo) ~14 ¥ (o)
S Y (o) 207 Yo (o) 13 Y (0]
Yol +10 Yy ioi!
= PP —{30g)
5124%, (01~ 20" Y ia) =34, lo)d
El ig)=- 23+ 4%
Loloy 02;2‘/’010}*,202 1/,.](0,’,,,,3‘/,1(0)1
{30h)
B o) —2 ¢, (o)t
ES o) — L‘/’i"li’_ 30
7115 ¥sial = 7 P (ol
and
Eilo)=~ Z (305

21115 ¥ (o) + 2 4 i)t

The velocity field exterior to the sphere, correspon-
ding to the exact solution (30), can be expressed in
terms of the fundamental singularity solutions of Sto-
kes flow. It is a simple matter to determine the requi-
red singularities that generate the disturbance flow due
to the presence of a porous sphere immersed in the
primary flow U™ (x) = (7 + Ze, :

o i 1
u’ix)=U~"(x) 4 —Z—;I)f,o(g)

1., sk ) . |
1 '(;DaAo lg} a‘x’zf ugix; e, +’}g‘f-)Da,n(Ur'
1 gt
~E|°,0(,(7)—€E3°‘0(a) a—x’iiuulx;ex)

31)

in which u,(x; e,) and up(x; e,) denote the fundamen-
tal solutions for a Stokeslet and a potential doublet
located at origin. As suggested by the variable velocity
gradient of the primary flow we need an axial Stokes

H
quadrupole éafzus (x;e,) and a potential octupole
X

2
%ug(x;ex)that is associated with the Stokes quadru-

pole to balance the power-law variations of the solu-
tion in r [cf. Chwang [20}].

Although the primary flow has a pressure gradient,
V P=(x) = 4e, hence producing a 'buoyancy effect’ on
the sphere, this buoyancy force must be balanced by
the net effect of the viscous stress, V2U°°(x) = 4e,, of
the primary flow. The drag on the sphere therefore co-
mes solely from the contribution of the Stokeslet:
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= — 4 7D?,(o)e, (32)

{the dimensional drag is F multiplied by xKa%. For a
ri'gid impermeable sphere, Chwang and Wu [18] dis-
covered the types of singularities necessary to construct
the solution and evaluated the drag force from the Sto-
keslet distribution, all being identical with the present
solutions (31} and (32), in the limit of o—o0.1t is note-
worthy that the primary flow with Hagen-Poiseuille
velocity profile in a circular tube of radius R can be
freated by superimposing a uniform streaming flow
U "(x) = R%e, on a paraboloidal flow U™ (x) = -(y* + 2%
e,

Let us now consider a more general paraboloidal
flow, (29) with £ # 0, past a porous sphere. It is simple
matter to construct an exact solution for this problem.
All we have to do for this is to determine a solution ei-
rher for

U={x)=jy%e, (33a)
or for
U~(x)=z'e, {33b)

owing to the linearity of the problem (i.e., superposi-
tion rule). However, the solution for (33a) [or {33b)]
can be easily obtained by decomposing the exact solu-
tion (31} for U*(x)=(y*+z9)e, into the two symmetric
parts for 2-dimensional paraboloidal flows of (33a,b),
in particular, for the primary flow U~ (x) = yzex , the
velocity field exterior to the sphere is given by

o 1 .
u"(&x):yzex+ZDﬂo[a)ustx ie)

+L Do) Zu,iix s ene,)

12 ady
o 1l .0,, . 9 .
+{E,,o(o)+§6D,,ata/}§a—yuk(x;ez)
2
+%E§’,o(a)~%,un(x ;ex) (34)

In obtaining (34) from (31), we have applied the identi-
ties:

Aakyuss(x H exve.v»)+azuss(x ;etvez)
2
Za—x,us(x sey) tu,(x e, 35a)
a* 3? . : ;
[ayz+'a—z,]uD(X;e,)=—5:,uD(x;ex) 35b)

and

uz(x,e,)=u,(x;e;) (35¢c)

‘au x;e,)—=
R ’ y ay / .

oz

As a matter of fact, the solution for U"(x) = zzex is the
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2
counterpart of the expression (34), with a% '58;1"’: and

2
e, replaced by%,gz—,,—ey and e,, respectively. The

complete solution for (29) with an arbitrary £ may be
constructed by applying the superposition rule to the
solution for each two-dimensional parabcloidal flow
(33a,b). For instance, the total hydrodynamic force ac-
ting on the porous sphere in the primary flow, (29),
can be obtained as:

F= -2z(1+§)D?,(0)ex. (36)

In this case the torque T is obviously zero. The drag,
(36), may be regarded as associated with that on the
same sphere in a uniform streaming flow of an equiva-
lent velocity

Uz 1+ &)1 Y (a) =2 Y (o)}
3 ¢ (o)

[see (14) for the drag on a porous sphere in a uniform
streaming flow]. Thus, a freely suspended porous sp-
here in the primary flow will translate with a velocity
given by (37). It is of interest to note that the velocity
(37) is different from the surface average of the primary
flow velocity (29a). In Figure 4, the equivalent velocity
U, of (37) is plotted versus the dimensionless perme-
ability. It can be noted that only for an impermeable
sphere (i.e., 0—~oc),does the equivalent velocity, U, of
(37). become the same as the surface average velocity,

€ (37)

both having the value %(1 +&)e,.

Stagnation-like quadratic flow
Let us now turn to a stagnation-like quadratic flow
with a velocity profile

:%(H—f)x’e,— Exye,— xze, (38a)
which obviously satisfies the creeping motion equa-

tion if the pressure associated with it is

U~ (x)

].Oi
& \m‘_
*o6* D —
- |
RO |
2 04r '
|
|
0.2+
0.0 L L |
1073 102 10-! 1.0 10
x/a?

Fig. 4. Equivalent translational velocity, U; of (37),
as a function of the dimensionless permeabi-

X
litya"2 .

Pe(x)=(1+¢)x. (38b)

The stagnation plane is defined by x = 0. Although this
type of quadratic flow is of some intrinsic interest in
serving as a local component of a more complicated
flow in an unbounded domain, it plays an important
role in determining a general motion of a particle near
a flat interface.

We consider, first, a simple case of an axisymmetric
stagnation-like flow, (38) with £=0. In this case, the
exact solution for the flow fields exterior and interior to
the sphere involves the nonzero spherical harmonics,
pnandg, withn=1, 3 and m =0, in the general solu-
tions:

{pg} :7"571 {Droz.o(o) Y. (8 4

Pn 4 Dsolo) n=nl‘°and'3 ‘ (39a)
H - Ej (o) ,

% ¢t % :7 5n t (7‘ " Yn,nkg. ¢’],
$n 4 lEio(o)) p—1and3  (39b)

Here, the coefficients, D, ¢ and E,, ; are given by (30c-j)
in the preceding problem for a paraboloidal flow.
The fundamental singularity solutions for Stokes
flow can be used in an interesting way to construct the
flow field exterior to the porous sphere that would be
generated by the presence of the particle. The exterior
velocity associated with the spherical harmonics pg
and #;, of (39) can be represented by a Stokeslet (requi-
red to produce a drag), a potential dipole (asscciated
with the Stokeslet to account for the body-thickness ef-
fect), an axial Stokes quadrupole (as suggested by the
variable velocity gradient of U™ (x)) and a potential
octupole (associated with the Stokes quadrupole):
1 a3t

o - | o
w’x)=U (x'+’TD"°(a)——ES_D""(O)E;“

1 ) 1 ;

. — —=—Do ko ( .

“s(xvex) %15D3‘0»0)+2Ex.o o)

1 o°

T

The total hydrodynamic force on the sphere is evalua-
ted from the contribution of Stokeslet:

F= -2zD%(qd)e, 1)

fup(x ey, {40

which reduces in the limiting case of animpermeable
sphere (i.e.,0» o0} tO Lim F=2re,.

Finally, we consider a more general quadratic flow,
(38) with &= 0. The solution is an analogous to that of
U™ (x) = (& + 29, in the previous example. In view
of the linearity of the problem, it is sufficient to solve
the primary flow

Un(x) =+

5 xle,—xye, (42a)
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or

U""(x)z%x’e,— xze, i42h)

in order to construct the exact solution for U~(x)given
by (38). However, if we note that the primary flow, (38)
with £=1, consists of two symmetric components of
(42a,b), then decomposing the solution {40) into the
two parts we can easily determine the velocity field for
each component flow. The result for the 2-demensic-

nal stagnation-like flow, U™( x2e ~iye,, i
. 1 )
u"(x)z?xze,-x}’eﬁ‘ 3§D10,n(0)
a* 1 o
D;’.,la)a L ug(x ;e H 2Eﬁo\o)
-61(5 sola)t aaxuss(x;eywey)
1 ; 1 .., 0
- %1_5D’0'°(‘”>+'2*E‘0'°(\"”a_y UglXse,e,)
82
+1?E;’otaliarzun(x jey)
2 i )
- —u,{x; . (43)
2axay"” xies)!

In obtaining the above expression for the velocity field
around a porous sphere from (34), we have applied the
identities, (30a,b) and

%xuss(x;ey,ey)-Pa—aJ:llss(X:ez.ez“
:ga—xizus(x;ex) (44a)
ra;?—azfuukx;ey)4 af;zu,,(x;eﬂ

. ;;zunfx;e;u (44b)

between the fundamental singularity solution of creep-
ing motion equation. Consequently, the solution for
the 2-dimensional stagnation-like flow of {42b) can be

immediately determined on replacinga—y and e, in (43)
by*;‘z and e,, respectively. This completes the solution
for U" (x) of (38) with an arbitrary £.

The hydrodynamic force acting on the sphere im-
mersed in the primary flow, U™ (x) of (38) is thus given
by

F=—pnll- £)D% g} e,. (45}
When o»cc, Equation (45) reduces to the drag for the

case of an impermeable sphere, and is identical with
the result of Chwang [20] for ¢=0.
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This completes the solution for a porous sphere im-
mersed either in a linear shear and an axisymmetric
straining flows or in a quadratic paraboloidal and a stag-
nation-like flows of (29) and (30). As we shall see in the
forthcoming part 2 of the present paper, these solu-
tions play an important role in determining the gene-
ral motion of a porous particle in the vicinity of a plane
fluid-fluid interface.

DISCUSSION

In the previous sections, we have analyzed the mo-
tion of a porous sphere through a linear or a quadratic
mean flow at infinity in an unbounded single-fluid do-
main. The linearity of the problem enables us to deter-
mine the translational and angular velocities of a freely
suspended neutrally buoyant porous sphere in the pre-
scribed flow:

47rA.0‘0)

~8AC ) {46a, b)
Here, F and T are the hydrodynamic force and torque
acting on a stationary porous sphere due to the exis-
tence of a linear or a quadratic flow at large distances
from the particle. Thus, given the initial particle posi-
tion, these equations (46a,b) provide its complete tra-
jectory in the fiow. As a simple illustration, we deter-
mine the trajectory for a porous sphere freely suspen-
ded in an off-centered paraboloidal flow, U”(x)=
{e(y-yo) + (2-20) }e,, that is equivalent to a centered
one (i.e., with yg = z; = 0) superimposed on a uniform
streaming flow plus linear shear flows. The result is

1+¢ { ¥ (o) =29, (o)t
= 2+ 1'2 . >, - !x
U=(esi+a 3 Vo) )
(47a)
and
1 1 T
=_2 Eyoe, — ?Zoey. (47b)

The trajectory equations (47a,b) are relevant to ti.
problem of a porous sphere freely suspended at an ar-
bitrary point in Poiseuillian flow through a cylindrical
tube of elliptic cross-section.

It has been found that, in the case of dilute suspen-
sion, the contributions to the bulk stress from the vari-
ous particles are independent, and the contributions
arising from the bulk rate of strain can be characteri-
zed by a stresslet in the pure straining motion of the
ambient fluid [cf. Batchelor [21]]. When the suspen-
sion has a wholly isotropic structure, the effect of the
presence of the particles is simply equivalent to an
increase in the shear viscosity of the suspension. The
magnitude of this increase, expressed as a fraction of
the viscosity z of the ambient fluid, is linear function of
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Fig. 5. Viscosity constant, /A, as a function of the di-
mensionless permeability %; ——, for the ex-
act solution of (48); - - - -, for the asymptotic
solutions of (49a,b).

the concentration of the particle by volume, and the
constant of proportionality A depends on the constitu-
tion of the particles. In particular, for the case of a sus-
pension of identical porous spheres, the viscosity cons-
tant A is given by

A=~ LA 48)
which is the magnitude of the stresslet strength. When
a-c00r o= 0, Kojimna [13] evaluated asymptotically the
viscosity constant A that can be readily reproduced by
applying the asymptotic properties of spherical Bessel
functions to A3 ¢(o):

A:% 1-36")+0(c", as o —oo  (49a)
and

A:}‘a2 {1~ 202)4-0(0‘) s — 0 {459b)

10 3B o : ’

In Figure 5, the viscosity constant A of (48} is plotted
versus the dimensionless permeability. Also shown for
cornparison are the corresponding asymptotic solutions
of (49a,b). It can be noted that the asymptotic forrns
provide an excellent approximation in the limit of lar-
ge or small permeability.

It is worth commenting that the scope of the analy-
sis can be readily extended to determine the particle
motion in any general linear or quadratic flows in the
presence of a plane interface. However, it should be
mentioned that the undisturbed flow be compatible
with the presence of the interface. In conclusion, we
can also solve for an arbitrary motion of a particle in
the presence of a deformable interface by means of a
surface distribution of fundamental singularities (i.e.,
integral representation of fundamental solutions) for
both Stokes and Brinkman equations.
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NOMENCLATURE
a sphere radius
Apm Dom o coefficients of spherical harmonic p, of
order 11 rank m
B Enm @ coefficients of spherical harmonic ¢, of

order 7 rank m
Com . coefficient of spherical harmonic X, of
order n rank m

e e, e base vectors in the Cartesian coordinate
system x,y,2Z

F hydrodynamic force

1,,+§ (er) : modified Bessel function of order n + %
x . permeability

K : flow parameter

I : characteristic length scale

L strain rale tensor
D . pressure field

De . characteristic stress scale

P, #, X, : solid spherical harmonics of order n
P (x) undisturbed pressure field

(r.6.9) . spherical coordinate system
T . hydrodynamic torque
u . velocity field

u, : characteristic velocity scale
up : velocity for potential doublet
Upg : velocity for potential quadrupole
ug . velocity for Stokeslet
Ugg . velocity for stresslet
U . translational velocity
U™ (x) undisturbed velocity field
X : position vector

Yo : surface spherical harmonic of order n

rank m

a Stokeslet

8 potential doublet

¥ rotlet

r shear rate

A viscosity constant

M : viscosity of fluid

Q angular velocity 5

¢ parameter defined by 0% = &

3 stress field *

£ flow parameter
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